

Technology Selection and Prioritization Process for the ExEP 2018 Technology Gap List

Brendan Crill

Deputy Technology Development Manager

Exoplanet Exploration Program

Jet Propulsion Laboratory/Caltech

ExoPAG 16

Mountain View, CA

18 June 2017

Program Technology Updates Since Last ExoPAG

Exoplanet Exploration Program

1. TDEM update https://exoplanets.nasa.gov/exep/technology/TDEM-awards/

- TDEM-15 Breckinridge: SOW developed and Milestone Whitepaper approved by ExoTAC
- TDEM-10 Bierden: MEMs DMs pre-environmental characterization completed and shipped for environmental testing at GSFC
- TDEM-14 Serabyn: Vector
 Coronagraph demonstration in
 HCIT starting in July
 (10⁻⁹ contrast goal at 3 λ/D,
 10% band with charge-4 and
 charge-6 masks)

2. Decadal Survey Testbed

- Program Office is upgrading one of the High-Contrast Imaging Testbeds to enable future users to perform coronagraph demonstrations at the 10⁻¹⁰ contrast level
 - Peer Review of testbed design and goals for Phase 1 conducted
 - 1st light for unobscured demo scheduled for Feb 2018, completion by end FY18
 - Phase II: Segmented on-axis demonstration scheduled to start in October 2018

Program Technology Updates Since Last ExoPAG

Exoplanet Exploration Program

3. TRL assessments for large mission STDTs

Worked with other APD program offices and Aerospace to assess Technology
 Readiness Level (TRL) of technology needs of LUVOIR, HabEx, OST, and Lynx.

4. Starshade

- Paul Hertz directed the WFIRST mission to continue studying starshade compatibility
- Two workshops at JPL: Starshade
 Scattered Sunlight Control, Starshade
 Mechanical Architecture

5. Segmented Coronagraph Design & Analysis study

APLC design is most successful so far with apertures under consideration;

 APLC robustness against design tolerances being evaluated; Vortex being optimized for finite star size and on-axis secondary; PIAACMC considered for

longer-wavelength use.

 Next design round to include realistic errors (e.g. segment phase errors and SFE)

Program Technology Updates Since Last ExoPAG

Exoplanet Exploration Program

- 6. ExEP Technology Colloquium Series continues https://exoplanets.nasa.gov/exep/technology/tech_colloquium/
 - Mirror segment edge-sensing technology, colloidal microthrusters, MEMS DMs

7. Annual Technology Selection and Prioritization Process starts now!

First high-contrast coronagraph in space; starshade JWST² accommodation under study TESS

EXOPLANET EXPLORATION PROGRAM Technology Plan Appendix 2017

Brendan Crill

Deputy Technology Development Manager

Nick Siegler Program Chief Technologist

JPL Document No: 1513240

NASA Exoplanet Exploration Program

Jet Propulsion Laboratory, California Institute of Technology

Gaia

CoRoT³

Kepler

ESA/European Missions

New Worlds Telescope

2020 Decadal Survey Mission Concept Studies

- Origins Space Telescope
- HabEx Imaging Mission
- LUVOIR Surveyor
- Lynx

Probe Studies with Exoplanet focus

- WFIRST/Starshade Rendezvous (S. Seager)
- Radial Velocity Instrument (P. Plavchan)

Technology Gaps Selection Criteria

Exoplanet Exploration Program

- 1. Technology gaps considered for tracking and development by the ExEP must support APD exoplanet science missions as:
 - defined by the needs of the 2010 Decadal Survey as described in the Astrophysics Implementation Plan;
 - directed through the Science Mission Directorate;
 - selected through open competition; or
 - described in the APD 30-year roadmap.
- 2. The subset of these gaps that <u>enables</u> or <u>enhances</u> exoplanet science are selected and prioritized onto the ExEP Technology Gap List
 - Technologies that address these gaps are the ones prioritized for development and considered for resource allocation
 - The list is published in the annual Technology Plan Appendix
 - Some of these technologies may be funded outside of the ExEP

Technology Selection and Prioritization Process

Exoplanet Exploration Program

ID	Activity	
1	Technology needs input window opens	06/18/17
	email ExoPAGannounce: Technology Gap Lists, input forms, process explanation	06/09/17
	presentation at June ExoPAG	06/18/17
2	Technology window closes	08/28/17
3	Technology Gap Selection and Prioritization Criteria Review by APD Program Offices	08/25/17
4	Selection and Prioritization Criteria Review by ExoTAC	09/05/17
5	Technology Gap Assessment Review by APD Program Offices	09/18/17
6	Technology Gap Assessment Review by ExoTAC	10/02/17
7	Technology Gap Lists inform TDEM Amendment	mid-Nov
8	Technology Amendment released through NSPIRES	mid-Dec
9	ExEP Technology Plan Appendix updated and released	12/01/17
	Presentation at January ExoPAG ———	01/06/18
10	TDEM Proposal Deadline	03/15/18
11	TDEM Awards Selected	Aug 2018

The Enabling Coronagraph/Telescope Technology Contrast Needs

LUVOIR and HabEx reference designs mature

Angular Resolution

CG-1: Segmented mirrors

Contrast Stability

CG-4: Image post-processing

CG-7: Telescope vibration sensing and control

Detection Sensitivity

Ultra-low noise visible (CG-8) and infrared (CG-9) detectors

CG-6: Segment phasing and rigid body sensing and control

The Enhancing Coronagraph/Telescope Technology Contrast Needs

CG-11 Mid Infrared Spectral Coronagraph

CG-10 UV/Vis/NIR mirror coatings

Mission Efficiency

M-1: Ultra-high precision Radial Velociity

Detection Sensitivity

Ultra-low noise UV detectors (CG-12)

Starshade Technology Needs

5m Starshade Optical Shield Prototype

ExEP Technology Plan Appendix

Exoplanet Exploration Program

Next update: January 2018

	Exoplanet Exploration 1
Gap ID	Gap Title
S-2	Starlight Suppression and Model Validation
S-1	Control Edge-Scattered Sunlight
S-3	Lateral Formation Flying Sensing
S-4	Petal Shape
S-5	SS Deployment and Shape Stability
CG-1	Large Aperture Mirrors
CG-2	Coronagraph Architecture
CG-6	Mirror Figure / Segment Phasing, Sensing & Control
CG-7	Telescope Vibration Control
CG-9	NIR Ultra-Low Noise Detector
CG-3	Wavefront Sensing and Control
CG-5	Deformable Mirrors
CG-8	Visible Ultra-Low Noise Detector
M-1	Extreme Precision Radial Velocity
CG-4	Post-Data Processing
CG-10	UV/NIR/Vis mirror coatings
CG-11	Mid-IR Spectral Coronagraph
CG-12	UV Ultra-low noise detector

Enabling Technology
Enhancing Technology

Did we miss anything?

Additional Slides

2017 ExEP Technology Gap List

Exoplanet Exploration Program

Prioritized List

Gap ID	Gap Title	<u>Impact</u>	<u>Urgency</u>	<u>Trend</u>	<u>Total</u>
-	Weight:	10	10	5	
S-2	Starlight Suppression and Model Validation	4	4	2	90
S-1	Control Edge-Scattered Sunlight	4	4	2	90
S-3	Lateral Formation Flying Sensing	4	4	2	90
S-4	Petal Shape	4	4	2	90
S-5	SS Deployment and Shape Stability	4	4	2	90
CG-1	Large Aperture Mirrors	4	3	3	85
CG-2	Coronagraph Architecture	4	3	3	85
CG-6	Mirror Figure / Segment Phasing, Sensing & Control	4	3	3	85
CG-7	Telescope Vibration Control	4	3	3	85
CG-9	NIR Ultra-Low Noise Detector	4	3	3	85
CG-3	Wavefront Sensing and Control	4	3	2	80
CG-5	Deformable Mirrors	4	3	2	80
CG-8	Visible Ultra-Low Noise Detector	4	3	2	80
M-1	Extreme Precision Radial Velocity	3	3	3	75
CG-4	Post-Data Processing	4	2	2	70
CG-10	UV/NIR/Vis mirror coatings	3	3	2	70
CG-11	Mid-IR Spectral Coronagraph	2	3	3	65
CG-12	UV Ultra-low noise detector	2	3	2	60

Enabling Technology
Enhancing Technology
Watch List

Watch List

Sub-Kelvin Coolers
Advanced Cryocooler
Mid-IR Ultra-low Noise Detector
Astrometry

Technology Selection and Prioritization Process

Exoplanet Exploration Program

Selection and

Exo-TAC

reviewed

Peer reviewed

Prioritization

Criteria:

14 Technology gaps carried over from 2016

Neither enhancing nor enabling

Selection: enables or enhances direct detection and characterization of exoplanets?

Yes

Prioritize technologies according to criteria (Impact, Urgency, and Trend)

not accepted

No, but could benefit exoplanet science

Watch List

ExEP Technology Gap
List

Reviewed by Exo-TAC

2017 Prioritization Criteria

Exoplanet Exploration Program

4: Critical technology - required to meet mission concept objectives; without this technology, applicable missions would not launch	
3: Highly desirable - not mission-critical, but provides major benefits in enhanced science capability, reduced critical resources need, and/or reduced mission risks; without it, missions may launch, but science or implementation would be compromised	
2: Desirable - not required for mission success, but offers significant science or implementation benefits; if technology is available, would almost certainly be implemented in missions	
1: Minor science impact or implementation improvements; if technology is available would be considered for implementation in missions	

Urgency (weight: 10)	4: reduced risk needed for missions currently in pre-formulation or formulation.
	3: In time for the Decadal Survey (2019); not necessarily at some TRL but reduced risk by 2019.
	2: Earliest projected launch date < 15 yr (< 2030)
	1: Earliest projected launch date > 15 yr (> 2030)

Trend	4: (a) no ongoing current efforts, or (b) little or no funding allocated
(weight: 5)	
	3: (a) others are working towards it but little results or their performance goals are very far from the
	need, (b) funding unclear, or (c) time frame not clear
	2: (a) others are working towards it with encouraging results or their performance goals will fall short
	from the need, (b) funding may be unclear, or (c) time frame not clear
	1: (a) others are actively working towards it with encouraging results or their performance goals are close to need, (b) it's sufficiently funded, and (c) time frame clear and on time

Footnote: to be deemed "ready," the technology is available to NASA at TRL 6 by the earliest possible Preliminary Design Review (PDR) of a mission; or at TRL 5 by the start of Phase A